509-335-0550
gangd@wsu.edu
Associate Professor and Fellow, Institute of Biological Chemistry
Director of the Tissue Imaging and Proteomics Laboratory

 

David Gang.

See my Lab Site

Research Overview

Plant Specialized Metabolism

Plants produce an amazing diversity of small molecular weight compounds. While the chemical structures of close to 50,000 of them have already been elucidated, the total number of such compounds is probably in the hundreds of thousands to millions. Only a small number of these are part of what have been termed “primary” metabolic pathways; the rest of these molecules are called “secondary” metabolites, also known as specialized metabolites or natural products. The vast majority of these compounds are not found in the standard crop plants of the Western world, nor in standard laboratory model plants such as Arabidopsis thaliana and Medicago trunculata. These compounds are, however, believed to play vital roles in the physiology of the plants that produce them, particularly as elements of the plants’ defensive arsenals. Because of the great diversity of life strategies and accompanying defense strategies, these compounds truly represent the great diversity in the plant kingdom. Yet, very little is known about the mechanisms involved in the formation of almost all plant natural products.

Aromatic plants (e.g., sweet basil, turmeric and ginger) present excellent model systems research to identify these mechanisms because i) they synthesize high amounts of specialized compounds, ii) a substantial diversity of compounds can be found in closely related species, and iii) these compounds are often synthesized in specialized structures, such as rhizomes or secretory glands, which makes it possible to investigate the exact role of specific enzymes and genes in the production of specific metabolites in isolation from other major biochemical pathways. We can do this with the glands because these structures (known as the secretory peltate glandular trichomes) can be isolated, intact, from the rest of the plant (as is also the case for the terpenoid-producing glands from mint).

Our research seeks to elucidate the biosynthetic pathways that produce novel and important plant specialized metabolites in aromatic plants, to uncover the mechanisms responsible for the evolution of these pathways in the plant kingdom and to understand the function of a given natural product in the biology and physiology of a given plant species. The most productive approach in this area has been a multidisciplinary one-which utilizes the best tools from the fields of chemistry, biochemistry, molecular biology, plant physiology, whole organism biology and ecology-because understanding the role that a specific metabolite plays in the plant requires an understanding of the whole complexity surrounding its formation and utilization. Tools are only now becoming available which allow us to gain this understanding.Besides the intrinsic scientific value of understanding plant metabolism and how plants produce specific natural products, such knowledge is essential for rational custom-designed breeding (by classical methods) of targeted natural product profiles in chemically tailored plants. This knowledge is also essential for the application of genetic engineering techniques to improve and develop new aromatic plants.

Importance of Rhizomes

The rhizome is the original stem of the vascular plant lineage. Before plants developed upright stems, they grew horizontally via rhizomes. All extant primitive vascular plants and many advanced angiosperms still use rhizomes as their sole stem type. Rhizomes are responsible for the invasiveness, hardiness, and even harshness of many of the world’s most significant weeds, such as giant Salvinia, bermudagrass, johnsongrass, quack grass, cogon grass, and the horsetail “scouring rush”, to name a few of the most important. The ability of these rhizomatous weedy plants to invade new territory via underground “sneak attack” has led to their great success world-wide, and is directly attributable to their rhizomes. In contrast, many of the world’s most important medicinal plants, such as ginger and turmeric produce their medicinally active components in their rhizomes. Despite their importance, very little is known about what genes are involved in the growth and function of rhizomes. In the LCME we are seeking to identify genes and proteins that are expressed exclusively in the rhizome and to characterize the function of specific genes that play important roles in rhizome function from plants across the plant kingdom.

Publications

Articles

  1. Weber, D. J., Gang, D. R., Halls, S. C., Smith, B. N. and McArthur, E. D. 1994. Inheritance of Hydrocarbons in Subspecific Big Sagebrush (Artemisia tridentata) Hybrids. Biochem. System. and Ecol. 22:689.
  2. Halls, S. C., Gang, D. R. and Weber, D. J. 1994. Seasonal Variation in Volatile Secondary Compounds of Chrysothamnus nauseosus (Pallas) Britt.; Asteraceae ssp. hololeucus (Gray) Hall. & Clem. Influences Herbivory.  J. Chem. Ecology20:2055-2063.
  3. Weber, D. J., Gang, D. R., Halls, S. C. and Nelson, D. 1994  Juniper decline in Natural Bridges National Monument and Canyonlands National Park. 8th Wildland Shrub Symposium on Revegatation. Las Vegas, Nevada Intermountain Research Station Gen Tech Report INT-2,  Nov, 1993.
  4. Gang, D. R. and Weber, D. J. 1995. A Method for the Preparation of Genomic DNA for PCR and RAPD Analysis from Thick Walled Dormant Teliospores ofTilletia Species.  BioTechniques 19:92-96.
  5. Gang, D. R. and Weber, D. J. 1995. Genetic Variability and Phenetic Relationships Determined Among 10 Populations of Rubber Rabbitbrush (Chrysothamnus Nauseosus Ssp. Hololeucus) by RAPD Analysis of Bulked Genomic DNA Samples.  Bot. Bull. Acad. Sin. 36:1-8.
  6. Gang, D. R. and Weber, D. J. 1996. Using Random Amplified Polymorphic DNA to Analyze the Genetic Relationships and Variability Among Three Species of Wheat Smut (Tilletia).  Bot. Bull. Acad. Sin. 37:173-180.
  7. Dinkova-Kostova, A. D., Gang, D. R., Davin, L. B., Bedgar, D. L., Chu, A. and Lewis, N. G. 1996. (+)-Pinoresinol/ (+)-Lariciresinol Reductase from Forsythia intermedia. Protein Purification, cDNA Cloning, Heterologous Expression and Comparison to Isoflavone Reductase. J. Biol. Chem. 271:29473-29482.
  8. Gang, D. R., Dinkova-Kostova, A. T., Davin, L. B. and Lewis, N. G. 1997 Phylogenetic Links in Plant Defense Systems: Lignans, Isoflavonoids and Their Reductases. Comparison to Isoflavonoid Metabolism. In “Phytochemical Pest Control Agents” (Hedin, P., ed.) ACS Symp. Ser. 658:58-89.
  9. Gang, D. R., Fujita M., Davin, L. B. and Lewis, N. G. 1998 Establishing the Molecular Basis of Heartwood Formation Through the Lignan Biosynthetic Pathway in Western Red Cedar, Western Hemlock and Loblolly Pine: the “Abnormal Lignins”. In “Lignin and Lignan Biosynthesis” (Lewis, N.G. and Sarkanen, S., eds.). ACS Symp. Ser. 697:389-421.
  10. Gang, D. R., Kasahara, H., Xia, Z.-Q., Vander Mijnsbrugge, K., Bauw, G., Boerjan, W., Van Montagu, M., Davin, L. B. and Lewis, N. G. 1999. Evolution of Plant Defense Mechanisms: Relationships of Phenylcoumaran Benzylic Ether Reductases to Pinoresinol-Lariciresinol and Isoflavone Reductases. J. Biol. Chem. 274: 7516-7527.
  11. Gang, D. R., Costa, M. A., Fujita, M., Dinkova-Kostova, A. T., Wang, H. B., Burlat, V., Martin, W., Sarkanen, S., Davin, L. B. and Lewis, N. G. 1999. Regiochemical Control of Monolignol Radical Coupling: A New Paradigm for Lignin and Lignan Biosynthesis. Chemistry & Biology 6: 143-151.
  12. Fujita, M., Gang, D. R., Davin, L. B. and Lewis, N. G. 1999. Recombinant Pinoresinol-Lariciresinol Reductases from Western Red Cedar (Thuja plicata) Catalyze Opposite Enantiospecific Conversions During Secoisolariciresinol Formation: Gene Cloning and Heterologous Expression. J. Biol. Chem.274:618-627.
  13. Pichersky, E. and Gang, D. R. 2000. Genetics and Biochemistry of Specialized Metabolites in Plants: An Evolutionary Perspective. Trends in Plant Sci.5(10):439-445.
  14. Gang, D. R., Wang, J., Dudareva, N., Nam, K. H., Simon, J, Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil (Ocimum basilicum L.). Plant Physiol.125(2):539-555.
  15. Gang, D. R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J. P., Pichersky, E. 2002. Characterization phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant OMT family. Plant Cell 14(2):505-519.
  16. Gang, D. R., Beuerle, T., Ullmann, P., Werck-Reichhart, D., Pichersky, E. 2002. Differential production of meta hydroxylated phenylpropanoids in sweet basil (Ocimum basilicum L.) peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol. 130(3):1536–1544.
  17. Gang, D. R., Simon, J., Lewinsohn, E., Pichersky, E. 2002. Peltate glandular trichomes of Ocimum basilicum L. (sweet basil) contain high levels of enzymes involved in the biosynthesis of phenylpropenes. J. Herbs Spices & Med. Plants9(2/3):189-195.
  18. Gang, D. R., Pichersky, E. 2002. The role of specific enzyme types in multiple routes to aromatic meta hydroxylation in the phenylpropanoid pathway. In“Polyphenols Communications 2002; XXI International Conference on Polyphenols, Marrakech-Morocco, September 9-12, 2002” (El Hadrami, I., ed.). Secrétariat du Groupe Polyphénols, Université Victor Segalen, Bordeaux, France. pp. 5 – 6.
  19. Gang, D. R. 2003. The potential for evolution of new secondary metabolites.In “The Encyclopedia of Plant & Crop Science” (Goodman, R. M., ed.), Marcel Dekker, Inc., New York, NY.
  20. Min, T., Kasahara, H., Bedgar, D. L., Youn, B., Lawrence, P. K.,  Gang, D. R., Halls, S. C.,  Park, H., Hilsenbeck, J. L., Davin, L. B., Lewis, N. G., Kang, C. H. 2003. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278(50): 50714-50723
  21. Iijima, Y., Gang, D. R., Lewinsohn, E., Pichersky, E. 2004. Characterization of geraniol synthase from the peltate glands of sweet basil (Ocimum basilicum). Plant Physiol. 134:370-379.
  22. Boatright, J., Negre, F., Chen, X., Kish, C. M., Wood, B., Peel, G., Orlova, I., Gang, D. R., Rhodes, D., Dudareva, N. 2004. Understanding in vivobenzenoid metabolism in petunia petal tissue. Plant Physiol. 135:1993-2011.
  23. Gang, D. R., Ramirez-Ahumada, M. C., Ma, X.-Q. 2004. Biochemical-genomics investigation of curcuminoid and gingerol biosynthesis in turmeric and ginger. In “Polyphenols Communications 2004; XXII International Conference on Polyphenols, Helskinki, Finland, August 25-28, 2004” (Wahala, K., ed.). Secrétariat du Groupe Polyphénols, Université Victor Segalen, Bordeaux, France.
  24. Ma, X.-Q., Gang, D. R. 2004. The Lycopodium Alkaloids. Nat. Prod. Rep. 21: 752-772
  25. Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D. R., Bar, E., Lewinsohn, E., Pichersky, E. 2004. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil (Ocimum basilicum). Plant Physiol.136: 3724-3736.
  26. Gang, D. R. 2005. Evolution of flavors and scents. Annu. Rev. Plant Biol.56:301-25.
  27. Ma, X.-Q., Tan, C., Zhu, D., Gang, D. R. 2005. Huperzine A Content of Huperziaceae Species in China. J. Agric. Food Chem. 53:1393-1398.
  28. Fridman, E., Wang, J. H., Iijima, Y., Froehlich, J. E., Gang, D. R., Ohlrogge, J., Pichersky, E. 2005. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutumidentify a key enzyme in the biosynthesis of methylketones. Plant Cell 17 (4): 1252-1267.
  29. Jiang, H., Sólyom, A., Timmermann, B. N., Gang, D. R. 2005. Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19 (20): 2957-2964.
  30. Ma, X.-Q., Tan, C., Zhu, D., Gang, D. R. 2005. A Survey of Potential Huperzine A Natural Resources in China: the Huperziaceae. J. Ethnopharmacol. 104(1-2): 54-67  doi:10.1016/j.jep.2005.08.042
  31. Jiang, H., Somogyi, A., Jacobsen, N. A., Timmermann, B. N., Gang, D. R. 2006. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20(6): 1001-1012
  32. Jiang, H., Timmermann, B. N., Gang, D. R. 2005. Use of LC-ESI-MS/MS toidentify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J. Chromatog. A. 1111: 21-31. doi:10.1016/j.chroma.2006.01.103
  33. Jiang, H., Xie, Z., Koo, H., McLaughlin, S. P., Timmermann, B. N., Gang, D. R. 2006. Metabolic profiling, phylogenetic analysis and anti-inflammatory investigation of Zingiber species: tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry. 67:232-244. doi:10.1016/j.phytochem.2005.08.001
  34. Vassão, D. G., Gang, D. R., Kueduka, T., Jackson,B., Pichersky, E., Davin, L. B., Lewis, N. G. 2006. Chavicol formation in sweet basil (Ocimum basilicum):  cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem. 4: 2733-2744
  35. Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N., and Pichersky, E. 2006. Eugenol and isoeugenol, major aromatic constituents of spices, are naturally synthesized via unexpected phenylpropanoid ester reduction. Proc. Nat. Acad. Sci. USA. 103:10128-10133
  36. Deschamps, C., Gang, D.R., Dudareva, N., and Simon, J.E. 2006. Developmental regulation of phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.). Int. J. Plant Science 167(3):447-454.
  37. Ramirez-Ahumada, M.C., Timmermann, B.N., and Gang, D.R. 2006. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): Identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry. 67(15): 1673-1685
  38. Ma, X.-Q., Gang, D. R. 2006. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochemistry. 67(20): 2239-2255.
  39. Jiang, H., Somogyi, A., Timmermann, B. N., Gang, D. R. 2006. Instrument Dependence of ESI Ionization and MS/MS Fragmentation of the Gingerols. Rapid Commun. Mass Spectrom. 20(20): 3089-3100.
  40. Dixon, R. A., Gang, D. R., Charlton, A. J., Fiehn, O., Kuiper, H. A., Reynolds, T. L., Tjeerdema, R. S., Jeffery, E. H., German, J. B., Ridley, W. P. & Seiber, J. N. 2006. Applications of Metabolomics in Agriculture J. Agric. Food. Chem. 54, 8984-8994 DOI: 10.1021/jf061218t.
  41. Ma, X.-Q., Gang, D. R. 2006. Metabolic Profiling of in vitro micropropagated and conventionally greenhouse grown turmeric (Curcuma longa). J. Agric. Food Chem. 54 (25), 9573 -9583 10.1021/jf061658k
  42. Jiang, H., Timmermann, B. N., Gang, D. R. 2006. Identification of diarylheptanoids in ginger (Zingiber officinale Rosc.) by LC-ESI-MS/MS. Rapid Commun. Mass Spectrom21(4), 509 – 518 doi 10.1002/rcm.2858
  43. Ma, X.-Q., Tan, C., Zhu, D.-Y., Gang, D.R., and Xiao, P. 2007. Huperzine A from Huperzia species—An ethnopharmacolgical review. J. Ethnopharmacol.113: 15–34. doi:10.1016/j.jep.2007.05.030
  44. Kapteyn, J., Qualley, A. V., Xie, Z., Fridman, E., Dudareva, N., and Gang, D. R. 2007. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell 19: 3212–3229.
  45. Xie, Z., Kapteyn, J., Gang, D. R. 2007. A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. The Plant Journal 54:349-361.
  46. Ma, X.-Q, Gang, D.R. 2008 In vitro production of huperzine A, a promising drug candidate for Alzheimer’s Disease.  Phytochemistry 69 (10): 2022-2028.
  47. Xie, Z., Ma, X.-Q. and Gang, D.R. 2009 Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism. J.Exp.Bot. 60:87-97. doi:10.1093/jxb/ern1263 (2009).
  48. Marks, M.D., Tian, L., Wenger, J.P., Omburo, S,N., Soto-Fuentes, W., He, J., Gang, D.R., Weiblen, G.D. and Dixon, R.A. 2009.  Identification of candidate genes affecting delta (9)-tetrahydrocannabinol biosynthesis in Cannabis sativa. J.Exp.Bot. 60:3715-3726.
  49. Kapteyn, J., He, R., McDowell, E., and Gang, D.R., 2010  Incorporation of nan-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples.  BMC Genomics 11:413. doi:10.1186/1471-2164-11-413.
  50. Schilmiller, A.L., Miner, D.P., Larson, M., McDowell, E., Gang D.R., Wilkerson, C. and Last, R.L. 2010.  Studies of a biochemical factory: Tomato trichome deep expressed sequence tag sequencing and proteomics.  Plant Physiol.  153:1212-1223. doi:10.1104/pp.110.157214
  51. McDowell, E.T., Kapteyn, J., Schmidt, A., Li, C., Kang, J.H., Descour, A., Shi, F., Larson, M., Schilmiller, A., An, L., Jones, A.D., Pichersky, E., Soderlund, C.A., Gang, D.R. 2011.  Comparative functional genomic analysis of Solanum glandular trochome types.  Plant Physiol. 155:524-539.  doi:10.1104/pp.110.167114
  52. Balbuena, T.S., He, R., Salvato. F., Gang, D.R., Thelen, J.J. 2012.  Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale.  Frontiers Plant Sci. 3:131.  doi: 10.3389/fpls.2012.00131.
  53. Buchel, K., McDowell, E., Nelson, W., Descour, A., Gershenzon, J., Hilker, M., Soderlund, C., Gang, D.R., Fenning, T., Meiners. T., 2012.  An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics. 13:242. doi: 10.1186*1471-2164-13-242.
  54. Zhao, N., Ferrer, J.L., Moon, H.S., Kapteyn, J., Zhuang, X., Hasebe, M., Stewart, C.N. Jr, Gang D.R., Chen, F.  2012 A SABATH methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification.  Phytochemistry 81:31-41. doi: 10.1016/j.phytochem.2012.06.011
  55. Berim, A., Hyatt, D.C., Gang, D.R. 2012. A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil.  Plant Physiol. 160(2): 1052-1069. doi: 10.1104/pp.112.204164
  56. McDowell, E.T., Gang, D.R., 2012.  A dynamic model for phytohormone control of rhizome growth and development.  Recent Advances in Phytochemistry. 42:143-165
  57. He, R., Kim, M.J., Nelson, W., Balbuena, T., Kim, R., Crow, J., May, G.A. Thelen, J.J., Soderlund, C.A., Gang, D.R. 2012.  Next generation dequencing based transcriptomic and proteomic alanysis of the connom reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity.  American Journal of Botony 99(2): 232-47. doi: 10.3732/ajb.1100429
  58. Koo, H.J., Gang, D.R. 2012.  Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.  PLoS One. 2012;7(12):e51481.
  59. Berim, A., Gang, D.R. 2013.  The roles of a flavone 6-hydroxylase and 7-O-demethylation in the flavone biosynthesis network of sweet basil.  J. Biol. Chem. 288(3): 1795-805
  60. Ishiuchi, K., Park, J.J., Long, R.M. Gang, D.R. 2013.  Production of huperzine A and other Lycopodium alkaloids in Huperzia species grown under controlled conditions and in vitro.  Phytochemistry 91: 208-219  doi: S0031-9422 (12) 00486-4.10.1016/j.phytochem.2012.11.012.
  61. Flores-Sanchez, I.J. & Gang, D.R. 2013. Inhibition of hydroxycinnamoly- CoA thioesterases in ginger (Zingiber officinale Rosc.) and turmeric (Curcuma longa L.) by lipase inhibitors.  Plant Physiol. Biochem. 72: 46-53. doi: 10.1016/j.plaphy.2013.02.012
  62. Koo, H.J., McDowell, E.T., Ma, X., Greer, K., Kapteyn, J., Xie, Z., Descour, A., Kim, H.R., Yu, Y., Kudrna, D., Wing, R.A., Soderlund, C.A., Gang, D.R. 2013.  Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids.  BMC Plant Biology 2013, 13:27
  63. Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill, H.H. 2013.  Ion Mobility-Mass Correlation Trend Line Separation of Glycoprotein Digests without Deglycosylation.  Int.J.Ion Mobil. Spectrom. 16(2): 105-115.
  64. Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill, H.H. 2013.  Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 85(5): 2760-9. doi: 10.1021/ac303273z.
  65. Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.T., Zhang, Q., Kim, M.J., Schatz, M.C., Campbell, M., Li, J., Bowers, J., Tang, H., Lyons, E., Ferguson, A., Narzisi, G., Nelson, D.R., Blaby-Haas, C.E., Gschwend, A.R., Jiao, Y., Der, J.P., Zeng, F., Han, J., Min, X., Hudson, K.A., Singh, R., Grennan, A.K., Karpowicz, S.J., Watling, J.R., Ito, K., Robinson, S.A., Hudson, M.E., Yu, Q., Mockler, T.C., Carroll, A., Xheng, Y., Sunkar, R., Jia, R., Chen, N., Arro, J., Wai, C.M., Wafula, E., Spence, A., Han, Y., Xu, L., Zhang, J., Peery, R., Haus, M.J., Xiong, W., Walsh, J.A., Wu, J., Wang, M.L., Zhu, Y.J., Paull, R.E., Britt, A.B., Du, C., Downie, S.R., Schuler, M.A., Michael, T.P., Long, S.P., Ort, D.R., Schopf, J.W., Gang, D.R., Jiang, N., Yandell, M., dePamphilis, C.W., Merchant, S.S., Paterson, A.H., Buchanan, B/B/, Li, S., Shen-Miller, J. 2013.  Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.).  Genome Biology. 14:R41. doi: 10.1186/gb-2013-14-5-r41
  66. Berim, A., Gang, D.R., 2013.  Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil.  Phytochemistry.  92:33-41.
  67. Soderlund, C., Nelson, W., Willer, M., Gang, D.R. 2013.  TCW: Transcriptome Computational Workbench.  PLoS One 8(7): e69401. doi: 10.1371/journal.pone.0069401
  68. Kim, M.J., Nelson, W., Soderlund, C.A., Gang, D.R. 2013.  Next- Generation Sequencing- Based Transcriptional Profiling of Lotus “China Antique”. Tropical Plant Biology. 10.1007/s12042-013-9130.4
  69. He, R., Salvato, F., Park, J.J., Kim, M.J., Nelson, W., Balbuena, T.S., Willer, M., Crow, J.A., May, G.D., Soderlund, C.A., Thelen, J.J. and Gang D.R. 2013.  A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and preteins that are targets for cultivated rice improvement.  BMC Plant Biology. 14(1):46.
  70. Salvato, F., Havelund, J.F., Chen, M., Roa, R.S.P., Rogowska- Wrzesinska, A., Jensen, O.N., Gang, D.R., Thelen, J.J. and Moller, I.M. 2014.  The pototo tuber mitochondrial proteome.  Plant Physiology.  164(2): 637-53.
  71. Yin, C., Park, J.J., Gang, D.R., Hulbert, S. 2014.  Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f.sp.tritici involved in auxin biosynthesis and rust pathogenicity.  Molecular Plant- Microbe Interactions 27(2): 227-235.

Patent Applications

  1. Lewis, N. G., Davin, L. B., Dinkova-Kostova, A. T., Fujita, M., Gang, D. R., and Sarkanen, S.  1997  International Patent Application: Recombinant Pinoresinol/Lariciresinol Reductase, Recombinant Dirigent Protein, and Method of Use, pp. 147.
  2. Gang, D. R., Kasahara, H., Davin, L. B. and Lewis, N. G. 1998  International Patent Application: Cloning of Dehydrodiconiferyl Alcohol Benzylic Ether Reductase from Pinus taeda and Heterologous Expression of its Recombinant Protein in E. coli, pp. 80.

Scholarly Presentations

Seminars

  1. Gang, D.R., McLaughlin, S.P. 8 – 10 July 2002. Botany and Agronomy Core: Verification of Accessions of Turmeric and Ginger, 2002 Botanicals Center Directors’ Meeting, Bethesda, MD. (Invited)
  2. Gang, D.R. 29 August 2002. Biosynthesis of Aromatic Natural Products in Sweet Basil:  Enzyme Evolution and Pathway Divergence, Arizona Center for Phytomedicine Research and Division of Medicinal Chemistry, College of Pharmacy, University of Arizona, Tucson, AZ. (Invited)
  3. Gang, D.R. 8 October 2002. Enzyme Evolution and Pathway Divergence in Natural Product Biosynthesis in Sweet Basil. Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ. (Invited)
  4. Gang, D.R. 13 February 2003. Enzyme Evolution and Pathway Divergence in Natural Product Biosynthesis in Sweet Basil. Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN. (Invited)
  5. Gang, D.R. 9 April 2003. Biosynthesis of Bioactive Plant Metabolites: Or How to Make a Poison. Center for Insect Science Seminar Series. University of Arizona, Tucson, AZ. (Invited)
  6. Gang, D.R. 6 November 2004. Functional Genomics and Metabolic Engineering of Ginger and Turmeric. Presented at the Max Planck Institute for Chemical Ecology, Jena, Germany (Invited)
  7. Gang, D.R. 16 November 2005. Prospects for Metabolic Engineering in the Post-Genomics Era. IGERT Program Seminar Series, University of Arizona, Tucson, AZ. (Invited)
  8. Gang, D.R. 19 September 2006. Medicinal Plant Metabolism. Department of Plant Sciences, The University of Arizona, Tucson, AZ. (Invited)
  9. Gang, D.R. 3 November 2006. Biosynthesis of medicinal compounds in sweet basil. Department of Biochemistry and Molecular Biophysics, The University of Arizona, Tucson, AZ. (Invited)
  10. Gang, D.R. 8 November 2006. Medicinal Plant Metabolism & Metabolic Engineering. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV. (Invited)
  11. Gang, D.R. 28 February 2007. Medicinal Plant Metabolism & Metabolic Engineering. Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA. (Invited)
  12. Gang, D.R. 14 May 2007. Medicinal Plant Metabolism (Prospects for Metabolic Engineering). Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada. (Invited)
  13. Gang, D.R. 17 May 2007. Applying “Omics”-based Technology to Medicinal Plant Research. Presented at the first annual meeting of the Shennong Center for Functional Genomics Research, Huazhong Agricultural University, Wuhan, China.
  14. Gang, D.R. 20 May 2007. Medicinal Plant Metabolism & Metabolic Engineering. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. (Invited)
  15. Gang, D.R. 20 May 2007. Medicinal Plant Metabolism & Metabolic Engineering. Institute of Plant Physiology and Molecular Biology, Chinese Academy of Sciences, Shanghai, China. (Invited)
  16. Gang, D.R. 29 May 2007. Control of metabolism in a single plant cell type. BIO5 Institute Scientific Advisory Board Meeting, The University of Arizona, Tucson, AZ. (Invited)
  17. Gang, D.R. 24 September 2007. Mutagenesis, knockout, and transfer of genes. Mathematical Biosciences Institute Workshop on Metabolic Engineering, The Ohio State University, Columbus, OH (Invited)
  18. Gang, D.R. 27 November 2007. What can systems biology and structural biology-based approaches tell us about metabolism in specialized plant tissues? Institute of Biological Chemistry, Washington State University, Pullman, WA. (Invited)

Conferences

  1. Gang, D.R., Pichersky, E. 9-12 September 2002. The Role Of Specific Enzyme Types In Multiple Routes To Aromatic Meta Hydroxylation In The Phenylpropanoid Pathway. XXI International Conference On Polyphenols (JIEP2002), Marrakech, Morocco. (Submitted)
  2. Gang, D.R. 4 July 2003. Chemosystematics, Genomics, and Metabolic Pathway Evolution. Workshop on Plant Chemosystematics, Royal Botanical Gardens Kew, Richmond, Surrey, UK. (Submitted)
  3. Hunter, S.C., Kish, C.M., Orlova, I., Dudareva, N., Ramirez, M.C., Gang, D.R.. 9 – 13 August 2003. Characterization of Acyltransferases Involved in Phenylpropanoid Metabolism, Phytochemical Society of North America annual meeting, Peoria, IL. (Submitted)
  4. Gang, D.R., Hunter, S.C., Pichersky, E. 26 – 30 August 2003. p-Coumaroyl 5-O-Shikimate: an Intermediate in the General Phenylpropanoid Pathway. Plant Biology 2003, American Society of Plant Biologists, Honolulu, HI. (Submitted)
  5. Ma, X.-Q. and Gang, D.R. 26 May 2004In Vitro Micropropagation of Ginger (Zingiber officinale Rosc.) and Turmeric (Curcuma longa L.). Presented at the World Congress on In Vitro Biology, San Franciso, CA.
  6. Gang, D.R. 25 – 29 July 2004. Micropropagation and Genomics Investigations of Ginger and Turmeric. Presented at Joint Meeting of ISCE-PSNA, Ottawa, Canada (Invited)
  7. Gang, D.R., Ramirez-Ahumada, M.C., Ma, X.-Q. 25-28 August 2004. Biochemical-genomics investigation of curcuminoid and gingerol biosynthesis in turmeric and gingerXXII International Conference on Polyphenols, Helskinki, Finland” (Submitted)
  8. Ramirez, M.C., Timmermann, B.T., and Gang, D.R. July 31 – August 4, 2004. Biosynthesis of Curcuminoids and Gingerols in Medicinal Plants From the Zingiberaceae. Presented at the 2004 International Congress on Natural Products Research. Phoenix, Arizona USA. (Submitted)
  9. Jiang, H., Timmermann, B.T., and Gang, D.R. July 31 – August 4, 2004. Phylogenetic and Chemotaxonomic Analysis of Medicinal Zingiberaceae. Presented at the 2004 International Congress on Natural Products Research. Phoenix, Arizona USA. (Submitted)
  10. Gang, D.R. October 31 – November 2, 2004. Functional Genomics and Metabolic Engineering of Ginger and Turmeric. Presented at the Second International Knowledge Millennium Conference 2004, Biotechnology in India: Building Bridge between Science and Industry, Hyderabad, India. (Invited)
  11. Gang, D.R. 13 – 17 March 2005. Specialized metabolism in aromatic plants. Presented in the Applications of Metabolomics in Agriculture Symposium at the Annual Meeting of the American Chemical Society, San Diego, CA. (Invited)
  12. Gang, D.R.  10 – 15 July 2005. Investigating Plant Metabolic Pathways in the Post-Genomics Era. Presented at the Gordon Research Conference on Plant Metabolic Engineering, Tilton School, New Hampshire. (Invited)
  13. Ma, X.-Q. and Gang, D.R.. July 30 – August 5, 2005. Metabolic Profiling of In Vitro Micropropagated and Greenhouse Grown Ginger and Turmeric. Presented at the Annual Meeting of the Phytochemical Society of North America, Salk Institute, La Jolla, CA. (Submitted)
  14. Kapteyn, J., Xie, Z., Haller, K., Soderlund, C.A., Haynes, P.A. and Gang, D.R.. July 30 – August 5, 2005. A Comparative Systems Biology Approach to Investigate Specialized Metabolism in Sweet Basil Peltate Glandular Trichomes. Presented at the Annual Meeting of the Phytochemical Society of North America, Salk Institute, La Jolla, CA. (Submitted)
  15. Qualley, A.V., Kapteyn, J., Dudareva, N. and Gang, D.R.. July 30 – August 5, 2005. Expression, Purification, and Characterization of a Recombinant S-adenosyl-L-methionine: Cinnamic Acid Carboxylmethyltransferase from Sweet Basil (Ocimum basilicum). Presented at the Annual Meeting of the Phytochemical Society of North America, Salk Institute, La Jolla, CA. (Submitted)
  16. Ma, X.-Q. and Gang, D.R. June 24 – 29, 2006. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale Rosc.). Presented at the second meeting of the Metabolomics Society, Harvard Medical School, Boston, MA. (Submitted)
  17. Ma, X.-Q. and Gang, D.R. June 24 – 29, 2006. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown turmeric (Curcuma longa L.). Presented at the second meeting of the Metabolomics Society, Harvard Medical School, Boston, MA. (Submitted)
  18. Xie, Z., Ma, X.-Q., Koo, H., Timmermann, B.N. and Gang, D.R. June 24 – 29, 2006. Identification of metabolite families in turmeric using Tandem-MS-ASC. Presented at the Second Meeting of the Metabolomics Society, Harvard Medical School, Boston, MA. (Submitted)
  19. Gang, D.R. July 8-12, 2006. Control of aromatic metabolism in sweet basil. Presented at the 2006 meeting of the Phytochemical Society of North America, University of Mississippi, Oxford, MS. (Invited)
  20. Gang, D.R., Koeduka, T., Fridman, E., Qualley, A., Vassao, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Dexter, R., Lewis, N.G., Clark, D., Noel, J.P., Baig, T., Dudareva, N. and Pichersky, E. August 5-9, 2006. The biosynthesis of volatile phenylpropenes involves unexpected phenylpropanoid ester reduction. Presented at the Joint Annual Meeting of the American Society of Plant Biologists and the Canadian Society of Plant Physiologists, Hynes Convention Center, Boston, MA (Submitted, selected for MiniSymposium)
  21. Ma, X.-Q., and Gang, D.R. August 22 – 25, 2006. Metabolic profiling of in vitro propagated and greenhouse grown ginger (Zingiber officinale Rosc.) and turmeric (Curcuma longa L.). Presented at the XXIIIrd International Congerence on Polyphenols, Winnipeg, Manitoba, Canada. (Submitted).
  22. Ramirez-Ahumada, M.C., Timmermann, B.N., and Gang, D.R. October 14 – 18, 2006. Biosynthesis of curcuminoids and gingerols: Identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted, oral presentation)
  23. Jackson, B.L. and Gang, D.R. October 14 – 18, 2006. Metabolic profiling of flavones in sweet basil (Ocimum basilicum) and peppermint (Mentha × piperita). Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  24. Xie, Z., Kapteyn, J. and Gang, D.R. October 14 – 18, 2006. Proteomic investigation of peltate glandular trichomes of sweet basil (Ocimum basilicumL.): identification of post-translational modification of enzymes of the phenylpropanoid and one carbon pathways. Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  25. Harrison, B. and Gang, D.R. October 14 – 18, 2006. Characterization of coniferyl acetate acetyl transferase from sweet basil (Ocimum basilicum). Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  26. McDowell, E., Kapteyn, J. and Gang, D.R. October 14 – 18, 2006. Comparative genomics of transcriptional control of plant specialized metabolism. Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  27. Ma, X.-Q. and Gang, D.R. October 14 – 18, 2006. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale Rosc.). Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  28. Koo, H. J., Ma, X.-Q. and Gang, D.R. October 14 – 18, 2006. Identification of cineole synthase from ginger and nerolidol/linalool synthase from turmeric. Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  29. Sanchez Soria, P., Kapteyn, J., Jackson, B.L. and Gang, D.R. October 14 – 18, 2006. Identification and characterization of flavonoid O-methyltransferases from sweet basil (Ocimum basilicum). Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  30. Kapteyn, J., Qualley, A., Dudareva, N. and Gang, D.R. October 14 – 18, 2006. Identification and characterization of cinnamate carboxyl methyltransferase from sweet basil (Ocimum basilicum). Presented at the 19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, Arizona. (submitted)
  31. Gang, D.R. 4 May 2007. Control of Metabolism in Medicinal Plants. Terpnet 2007. Strasbourg, France. (Invited)
  32. Gang, D.R. 12 May 2007. Applying “Omics”-based Technology to Medicinal Plant Research. Presented at Tradition to Technology, a joint conference of the Natural Health Products Research Society of Canada and the Canadian Herb, Spice and Natural Health Products Coalition, May 10-13 in Saskatoon, Saskatchewan, Canada. (Invited)
  33. Gang, D.R. 24 May 2007. Post-translational modification of proteins in a single plant cell type. Presented at the 24th Annual Missouri Symposium, Plant Protein Phosphorylation-Dephosphorylation, Columbia, Missouri. (Invited)
  34. Xie, Z., Kapteyn, J., and Gang, D.R. 15 – 20 July 2007. Control of Metabolism in Medicinal Plants: Phenylpropanoid and Terpenoid Production in Sweet Basil. Gordon Research Conference on Plant Metabolic Engineering. Tilton, New Hampshire. (Submitted)
  35. Gang, D.R. 25 July 2007. Control of Metabolism in Medicinal Plants. Annual Meeting of the Phytochemical Society of North America, St. Louis, Missouri. (Submitted)