Skip to main content Skip to navigation
Washington State University Molecular Plant Sciences

Assistant Professor, Institute of Biological Chemistry, Ph.D. 1996, National Academy of Sciences, Ukraine

Andrei Smertenko.

Research Interests

Plant development depends on the accurate balance between cell proliferation and differentiation. Cell proliferation determines the shape and size of plants, and represents a key factor for engineering plants with higher biomass production.  Majority of the cell proliferation activities take place in the meristem tissues. Cells originated in the meristems undergo differentiation but in some cases this differentiation is terminal and leads to the programmed cell death. Our research focuses on the identification and characterization of signaling pathways that control cell proliferation and understanding fundamental molecular mechanisms responsible for cell division. The laboratory focuses on three specific projects:

  1. Regulation of tree growth. We use genetics and mathematical modeling to understand how activity of specific stem cell niche cambium is controlled during plant development and in response to changes of the environmental conditions.
  1. Mechanisms of plant cytokinesis. Proliferation of cells in meristem tissues critically depends on the organization and dynamics of a plant-specific structure, the phragmoplast. The phragmoplast separates daughter cells during cytokinesis by constructing a partition called the cell plate. This process depends on the precise coordination between cytoskeletal dynamics, membrane trafficking, and oligosaccharide synthesis. Our research focuses on understanding phragmoplast construction and functions.
  1. Phenotyping tolerance to abiotic stresses in plants. We develop a novel high-throughput phenotyping approach for predicting plant survival and yield under abiotic stresses.

Our work combines a variety of complex investigative procedures including biochemical techniques, molecular biology, genetics, live cell imaging, and cell biology. The findings of our projects will be harnessed for the development of new technologies aiming at improving traits of crops and industrially important plant species.


Selected Publications

  1. Moschou P., Gutierrez-Beltran E., Bozhkov P.V., Smertenko A. (2016) Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Developmental Cell 37, 350-361.
  2. Smertenko A., Moschou P., Zhang L., Fahy D. and Bozhkov, P. (2015) Characterization of cytokinetic mutants using small fluorescent probes. Methods of Molecular Biology, 1370, 199-208.
  3. Ovecka M., Vaskebova L., Komis G., Luptovciak I., Smertenko A. and Samaj J. (2015) Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nature Protocols 10, 1234-1247.
  4. Gutierrez-Beltran E., Moschou, P.N., Smertenko, A.P. and Bozhkov, P.V. (2015) Tudor Staphylococcal Nuclease links formation of stress granules and processing bodies with mRNA catabolism in Plant Cell 27, 926-943.
  5. Smertenko A. (2014) Determination of phosphorylation sites in microtubule associated protein MAP65-1. Methods of Molecular Biology 1171, 161-170.
  6. Smertenko A, Bozhkov P. (2014) The life and death signalling underlying cell fate determination during somatic embryogenesis. In Nick P, Opatrný Z, eds. Applied Plant Cell Biology, Plant Cell Monographs 22, Berlin, Heidelberg: Springer-Verlag, 131-178.
  7. Kutik J., Kuthanova A., Smertenko A., Fischer L. and Opatrny Z. (2014) Cadmium-induced cell death in BY-2 cell culture starts with vacuolization of cytoplasm and terminates with necrosis. Physiologia Plantarum, 151 (4), 423-433.
  8. Smertenko A. and Bozhkov P.V. (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. Exp. Bot. 65, 1343-1460.
  9. Minina E.A., Filonova L.H., Fukada K., Savenkov E.I., Gogvadze V., Clapham D., Sanchez-Vera V., Suarez M.F., Zhivotovsky B., Daniel G., Smertenko A. and Bozhkov P.V. (2013) Autophagy and metacaspase determine the mode of cell death in plants. Cell Biol. 203:917–927.
  10. Moschou P.N., Smertenko A.P., Minina E.A., Fukada K., Savenkov E.I., Robert S., Hussey P.J. and Bozhkov P.V. (2013) The caspase-related protease Separase (EXTRA SPINDLE POLES) regulates cell polarity and cytokinesis in Arabidopsis. Plant Cell 25:2171-2186.
  11. Smertenko A.P., Piette B. and Hussey P.J. (2011) The origin of phragmoplast asymmetry. Current Biology 21, 1924-1930.
  12. Smertenko A. and Franklin-Tong V.E. (2011) Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differentiation 18, 1263-1270.
  13. van Doorn W.G., Beers E.P., Dangl J.L., Franklin-Tong V.E., Gallois P., Hara-Nishimura I., Jones A.M., Kawai-Yamada M., Lam E., Mundy J., Mur L.A.J, Petersen M., Smertenko A., Taliansky M., van Breusegem F., Wolpert T., Woltering E., Zhivotovsky B. and Bozhkov P.V. (2011) Morphological classification of plant cell deaths. Cell Death Differentiation 18, 1241-1246.
  14. Smertenko A.P., Deeks M.J. and Hussey P.J. (2010) Strategies of actin reorganisation in plant cells. Cell Sci. 123, 3019-3029.
  15. Landrum M., Smertenko A., Edwards R., Hussey P.H. and Steel P.G. (2010) BODIPY probes to study peroxisome dynamics in vivo. Plant J. 62, 529-538.
  16. Sundstrom J.F., Vaculova A., Smertenko A.P., Savenkov E.I., Golovko A., Minina E., Tiwari B.S., Rodriguez-Nieto S., Zamyatnin A.A., Valineva T., Saarikettu J., Frilander M.J., Suarez M.F., Zavialov A., Stahl U., Hussey P.J., Silvennoinen O., Sundberg E., Zhivotovsky B., Bozhkov P.V. (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology 11, 1347-1354.
  17. Smertenko A.P., Kaloriti D., Chang H.-Y., Fiserova J., Opatrny Z. and Hussey P.J. (2008) The C-terminal variable region specifies the dynamic properties of MAP65 isotypes. Plant Cell 20, 3346-3358.
  18. Smertenko A.P., Chang, H.Y., Sonobe S., Fenyk S.I., Weingartner M. Bogre L. and Hussey P.J. (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. Cell Science 119, 3227-3237.
  19. Chang H.Y., Smertenko A.P., Igarashi H., Dixon D.P. and Hussey P.J. (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. Cell Science 118, 3195-3201.
  20. Bozhkov P.V., Suarez M.F., Filonova L.H., Daniel G., Zamyatnin A.A., Rodriguez-Nieto S., Zhivotovsky B. and Smertenko A. (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Nat. Acad. Sci. of the USA 102, 14463-14468.
  21. Smertenko A.P., Chang H.Y., Wagner V., Kaloriti D., Fenyk S., Sonobe S., Lloyd C., Hauser M.T. and Hussey P.J. (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: Molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035-2047.
  22. Müller S., Smertenko A., Wagner V., Heinrich M., Hussey P.J. and Hauser M.-T. (2004). The plant microtubule associated protein, AtMAP65-3/PLE, is essential for cytokinetic phragmoplast function. Current Biology 14, 412-417.
  23. Smertenko A.P., Bozhkov P.V., Filonova L.H., von Arnold S. and Hussey P.J. (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies Plant J. 33, 813-824.
  24. Hussey P.J., Hawkins T.J., Igarashi H., Kaloriti D., and Smertenko A. (2002). The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Molecular Biology 50, 915-924.
  25. Hussey P.J., Allwood E.G. and Smertenko A.P. (2002) Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Trans. Royal Soc. B. 357 (1422), 791-798.
  26. Smertenko A.P., Allwood E.G., Khan S., Jiang C.J., Maciver S.K., Weeds A.G. and Hussey P.J. (2001) Interaction of pollen-specific actin-depolymerizing factor with actin. Plant Journal 25, 203-212.
  27. Smertenko A., Saleh N., Igarashi H., Mori H., Hauser-Hahn I., Jiang Ch.-J., Sonobe S., Lloyd C.W. and Hussey P.J. (2000) A new class of microtubule-associated proteins in plants. Nature Cell Biol. 2, 750 – 753.